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Abstract
Abstract separation logics are a family of extensions of Hoare logic
for reasoning about programs that mutate memory. These logics are
“abstract” because they are independent of any particular concrete
memory model. Their assertion languages, called propositional ab-
stract separation logics, extend the logic of (Boolean) Bunched Im-
plications (BBI) in various ways.

We develop a modular proof theory for various propositional
abstract separation logics using cut-free labelled sequent calculi.
We first extend the cut-fee labelled sequent calculus for BBI of Hóu
et al to handle Calcagno et al’s original logic of separation algebras
by adding sound rules for partial-determinism and cancellativity,
while preserving cut-elimination. We prove the completeness of
our calculus via a sound intermediate calculus that enables us to
construct counter-models from the failure to find a proof. We then
capture other propositional abstract separation logics by adding
sound rules for indivisible unit and disjointness, while maintaining
completeness and cut-elimination. We present a theorem prover
based on our labelled calculus for these logics.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Logics of programs

General Terms Languages, Theory, Verification

Keywords Abstract separation logics, automated reasoning, la-
belled sequents , counter-model construction, bunched implications

1. Introduction
Separation logic (SL) [29] is an extension of Hoare logic for rea-
soning about programs that explicitly mutate memory. This is
achieved via an assertion language that, along with the usual (ad-
ditive) connectives and predicates for first-order logic with arith-
metic, has the multiplicative connectives separating conjunction ∗,
its unit >∗, and separating implication, or magic wand, −∗ , from
the logic of Bunched Implications (BI) [26], as well as the points-to
predicate 7→. The additive connectives may be either intuitionistic,
as for BI, or classical, as for the logic of Boolean Bunched Im-
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plications (BBI). Classical additives are more expressive as they
support reasoning about non-monotonic commands such as mem-
ory deallocation, and assertions such as “the heap is empty” [17].
In this paper we consider classical additives only.

The assertion language of SL must provide a notion of inference
to support precondition strengthening and postcondition weaken-
ing, yet little such proof theory exists, despite its link with the
proof-theoretically motivated BI. Instead, inference must proceed
via reasoning directly about the concrete semantics of heaps, or
finite partial functions from addresses to values. A heap satisfies
P ∗ Q iff it can be partitioned into heaps satisfying P and Q re-
spectively; it satisfies >∗ iff it is empty; it satisfies P−∗ Q iff any
extension with a heap that satisfies P must then satisfy Q; and it
satisfies E 7→ E′ iff it is a singleton map sending the address spec-
ified by the expression E to the value specified by the expression
E′. Such concrete semantics are appropriate for proving the cor-
rectness of a specific program in a specific environment, but mean
that if a different notion of memory (or more generally, resource)
is required then a new logic is also required.

Calcagno et al’s Abstract Separation Logic (ASL) [8] intro-
duced the abstract semantics of partial cancellative monoids, or
separation algebras, to unify notions of resources for heaps, heaps
with permissions, Petri nets, and other examples. These seman-
tics allow interpretation of ∗, >∗ and −∗ , although the latter is
not considered by Calcagno et al. However 7→ has no meaning
in separation algebras in general, and is therefore not a first class
citizen of ASL; it may be introduced as a predicate only if an
appropriate concrete separation algebra is fixed. Calcagno et al
do not consider proof theory for their assertion language, whose
propositional fragment we call Propositional Abstract Separation
Logic (PASL), but separation algebras are a restriction of non-
deterministic monoids, which are known to give sound and com-
plete semantics for BBI [13]. In this sense PASL is a refinement
of BBI, differing only by the addition of the semantic properties of
partial-determinism and cancellativity.

This link between BBI and PASL semantics raises the ques-
tion of whether existing proof theory for BBI can be extended to
give a sound and cut-free complete proof system for PASL; we an-
swer this question in the affirmative by extending the labelled se-
quent calculus LSBBI of Hóu et al [16] by adding explicit rules
for partial-determinism and cancellativity. The completeness of
LSBBI was demonstrated via the Hilbert axiomatisation of BBI,
but this avenue is not open to us as partial-determinism and can-
cellativity are not axiomatisable in BBI [6]; instead completeness
follows via a counter-model construction procedure. A novelty of
our counter-model construction is that it can be modularly extended
to handle extensions and sublogics of PASL.



We have also implemented proof search using our calculus
(although no decision procedure for PASL is possible [5]). To our
knowledge this is the first proof to be presented of the cut-free
completeness of a calculus for PASL1, and our implementation is
the first automated theorem prover for PASL.

Just as we have a family of separation logics, ranging across
different concrete semantics, we now also have a family of abstract
separation logics for different abstract semantics. These abstract
semantics are often expressed as extensions of the usual notion
of separation algebra; most notably Dockins et al [11] suggested
the additional properties of positivity (here called indivisible unit),
disjointness, cross-split, and splittability2. Conversely, the abstract
semantics for Fictional Separation Logic [18] generalise separa-
tion algebras by dropping cancellativity. Hence there is demand for
a modular approach to proof theory and proof search for propo-
sitional abstract separation logics. Labelled sequent calculi, with
their explicitly semantics-based rules, provide good support for this
modularity, as rules for the various properties can be added and re-
moved as required. We investigate which properties can be com-
bined without sacrificing our cut-free completeness result.

While we work with abstract models of separation logics, the
reasoning principles behind our proof-theoretic methods should be
applicable to concrete models also, so we investigate as further
work how concrete predicates such as 7→ might be integrated into
our approach. Proof search strategies that come out of our proof-
theoretic analysis could also potentially be applied to guide proof
search in various encodings of separation logics [1, 24, 30] in proof
assistants, e.g., they can guide the constructions of proof tactics
needed to automate the reasoning tasks in those embeddings.

Acknowledgment. This work is partly supported by the Aus-
tralian Research Council Discovery Grant DP110103173.

2. The labelled sequent calculus for PASL
In this section we define the separation algebra semantics of
Calcagno et al [8] for Propositional Abstract Separation Logic
(PASL), and present the labelled sequent calculus LSPASL for
this logic, adapting the calculus LSBBI for BBI of Hóu et al [16].
Soundness and cut-elimination are then demonstrated forLSPASL.

2.1 Propositional abstract separation logic
The formulae of PASL are defined inductively as follows, where p
ranges over some set V ar of propositional variables:

A ::= p | > | ⊥ | ¬A | A ∨A | A ∧A | A→ A |
>∗ | A ∗A | A−∗ A

PASL-formulae are interpreted according to the semantics below.

Definition 2.1. A separation algebra, or partial cancellative com-
mutative monoid, is a triple (H, ◦, ε) where H is a non-empty set,
◦ is a partial binary function H × H ⇀ H written infix, and
ε ∈ H , satisfying the following conditions, where ‘=’ is inter-
preted as ‘both sides undefined, or both sides defined and equal’:

identity: ∀h ∈ H.h ◦ ε = h
commutativity: ∀h1, h2 ∈ H.h1 ◦ h2 = h2 ◦ h1

associativity: ∀h1, h2, h3 ∈ H.h1 ◦ (h2 ◦ h3) = (h1 ◦ h2) ◦ h3

cancellativity: ∀h1, h2, h3, h4 ∈ H. if h1◦h2 = h3 and h1◦h4 =
h3 then h2 = h4

1 Larchey-Wendling [20] claims that the tableaux for BBI with partial-
determinism in [21] can be extended to cover cancellativity, but the “rather
involved” proof has not appeared yet.
2 Dockins et al [11] also suggest generalising separation algebras to have
a set of units; it is an easy corollary of [6, Lem. 3.11] that single-unit and
multiple-unit separation algebras satisfy the same set of formulae.

The paradigmatic example of a separation algebra is the set of
heaps; here ◦ is the combination of two heaps with disjoint domain,
and ε is the empty heap.

In the paper we prefer to express PASL semantics in the style of
ternary relations, to maintain consistency with the earlier work of
Hóu et al on BBI [16]; it is easy to see that the definition below is
a trivial notational variant of Def. 2.1.

Definition 2.2. A PASL Kripke relational frame is a triple
(H,R, ε), where H is a non-empty set of worlds, R ⊆ H ×
H × H , and ε ∈ H , satisfying the following conditions for all
h1, h2, h3, h4, h5 in H:

identity: R(h1, ε, h2) iff h1 = h2

commutativity: R(h1, h2, h3) iff R(h2, h1, h3)
associativity: ifR(h1, h5, h4) andR(h2, h3, h5) then there exists

h6 such that R(h6, h3, h4) and R(h1, h2, h6)
cancellativity: if R(h1, h2, h3) and R(h1, h4, h3) then h2 = h4

partial-determinism: if R(h1, h2, h3) and R(h1, h2, h4) then
h3 = h4

A PASL Kripke relational model is a tuple (H,R, ε, ν) of a
PASL Kripke relational frame (H,R, ε) and a valuation function
ν : V ar → P(H), whereP(H) is the power set ofH . The forcing
relation 
 between a model M = (H,R, ε, ν) and a formula is
defined in Table 1, where we writeM, h 6
 A for the negation of
M, h 
 A. Given a modelM = (H,R, ε, ν), a formula is true at
(world) h iffM, h 
 A. The formula A is valid iff it is true at all
worlds of all models.

2.2 The labelled sequent calculus LSPASL

Let LV ar be an infinite set of label variables, and let the set
L of labels be LV ar ∪ {ε}, where ε is a label constant not in
LV ar; here we overload the notation for the identity world in the
semantics. Labels will be denoted by lower-case letters such as
a, b, x, y, z. A labelled formula is a pair a : A of a label a and
formula A. As usual in a labelled sequent calculus one needs to
incorporate Kripke relations explicitly into the sequents. This is
achieved via the syntactic notion of relational atoms, which have
the form (a, b.c), where a, b, c are labels. A sequent takes the form

G; Γ ` ∆

where G is a set of relational atoms, and Γ and ∆ are multisets of
labelled formulae. Then, Γ;A is the multiset union of Γ and {A}.

As the interpretation of the logical connectives of PASL are
the same as those for BBI, we may obtain a labelled sequent
calculus for PASL, called LSPASL, by adding the rules P (partial-
determinism) and C (cancellativity) to LSBBI [16]. The rules
for LSPASL are presented in Fig. 1, where p is a propositional
variable, A,B are formulae, and w, x, y, z ∈ L. Note that some
rules use label substitutions. We write Γ[y/x] (resp. G[y/x]) for
the set of labelled formulae (resp. relational atoms) for which the
label variable x has been uniformly replaced by the label y. In each
rule, the formula (resp. relational atom) shown explicitly in the
conclusion is called the principal formula (resp. relational atom).
A rule with no premise is called a zero-premise rule. Note that the
→ L rule is the classical implication left rule.

A function ρ : L → H from labels to worlds is a label mapping
iff it satisfies ρ(ε) = ε, mapping the label constant ε to the identity
world of H . Thus we define an extended PASL Kripke relational
model (H,R, ε, ν, ρ) as a model equipped with a label mapping.

Definition 2.3 (Sequent Falsifiability). A sequent G; Γ ` ∆ is
falsifiable in an extended modelM = (H,R, ε, ν, ρ) if for every
x : A ∈ Γ, (a, b . c) ∈ G, and for every y : B ∈ ∆, we have
(M, ρ(x) 
 A), R(ρ(a), ρ(b), ρ(c)) and (M, ρ(y) 6
 B). It is
falsifiable if it is falsifiable in some extended model.



M, h 
 p iff p ∈ V ar and h ∈ v(p)

M, h 
 ⊥ iff never
M, h 
 A ∧B iff M, h 
 A andM, h 
 B

M, h 
 A→ B iff M, h 6
 A orM, h 
 B

M, h 
 > iff always
M, h 
 ¬A iff M, h 6
 A

M, h 
 A ∨B iff M, h 
 A orM, h 
 B

M, h 
 >∗ iff h = ε

M, h 
 A ∗B iff ∃h1, h2.(R(h1, h2, h) andM, h1 
 A andM, h2 
 B)

M, h 
 A−∗ B iff ∀h1, h2.((R(h, h1, h2) andM, h1 
 A) impliesM, h2 
 B)

Table 1. Semantics of PASL, whereM = (H,R, ε, ν).

Identity and Cut:

id
G; Γ;w : p ` w : p; ∆

G; Γ ` x : A; ∆ G′; Γ′;x : A ` ∆′
cut

G;G′; Γ; Γ′ ` ∆; ∆′

Logical Rules:

⊥L
G; Γ;w : ⊥ ` ∆

(ε, w . ε);G; Γ ` ∆
>∗L

G; Γ;w : >∗ ` ∆

>R
G; Γ ` w : >; ∆

>∗R
G; Γ ` ε : >∗; ∆

G; Γ;w : A;w : B ` ∆
∧L

G; Γ;w : A ∧B ` ∆

G; Γ ` w : A; ∆ G; Γ ` w : B; ∆
∧R

G; Γ ` w : A ∧B; ∆

G; Γ ` w : A; ∆ G; Γ;w : B ` ∆
→ L

G; Γ;w : A→ B ` ∆

G; Γ;w : A ` w : B; ∆
→ R

G; Γ ` w : A→ B; ∆

(x, y . z);G; Γ;x : A; y : B ` ∆
∗L

G; Γ; z : A ∗B ` ∆

(x, z . y);G; Γ;x : A ` y : B; ∆
−∗ R

G; Γ ` z : A−∗ B; ∆

(x, y . z);G; Γ ` x : A; z : A ∗B; ∆ (x, y . z);G; Γ ` y : B; z : A ∗B; ∆
∗R

(x, y . z);G; Γ ` z : A ∗B; ∆

(x, y . z);G; Γ; y : A−∗ B ` x : A; ∆ (x, y . z);G; Γ; y : A−∗ B; z : B ` ∆
−∗ L

(x, y . z);G; Γ; y : A−∗ B ` ∆
Structural Rules:

(y, x . z); (x, y . z);G; Γ ` ∆
E

(x, y . z);G; Γ ` ∆

(u,w . z); (y, v . w); (x, y . z); (u, v . x);G; Γ ` ∆
A

(x, y . z); (u, v . x);G; Γ ` ∆

(x, ε . x);G; Γ ` ∆
U

G; Γ ` ∆

(x,w . x); (y, y . w); (x, y . x);G; Γ ` ∆
AC

(x, y . x);G; Γ ` ∆

(ε, w′ . w′);G[w′/w]; Γ[w′/w] ` ∆[w′/w]
Eq1

(ε, w . w′);G; Γ ` ∆

(ε, w′ . w′);G[w′/w]; Γ[w′/w] ` ∆[w′/w]
Eq2

(ε, w′ . w);G; Γ ` ∆

(x, y . z);G[z/w]; Γ[z/w] ` ∆[z/w]
P

(x, y . z); (x, y . w);G; Γ ` ∆

(x, y . z);G[y/w]; Γ[y/w] ` ∆[y/w]
C

(x, y . z); (x,w . z);G; Γ ` ∆

Side conditions:
Only label variables (not ε) may be substituted for. In ∗L and −∗ R, the labels x and y do not occur in the conclusion.
In the rule A,AC , the label w does not occur in the conclusion.

Figure 1. The labelled sequent calculus LSPASL for Propositional Abstract Separation Logic.

Theorem 2.1 (Soundness). For any formula A, and for an arbi-
trary label w, if the labelled sequent ` w : A is derivable in
LSPASL then A is valid.

Proof. We prove that the rules of LSPASL preserve falsifiability
upwards. The proof is straightforward so we omit the details; but
refer the interested reader to a similar proof for LSBBI [16].

2.3 Cut-elimination
The only differences between LSPASL and LSBBI [16] are the
additions of the structural rules P and C, so we may prove cut-
elimination by the same route, which in turn follows from the usual

cut-elimination procedure for labelled sequent calculi for modal
logics [25]. We therefore omit full proof details and simply list
the necessary lemmas. We use ht(Π) to denote the height of the
derivation Π.

Lemma 2.2 (Substitution). If Π is an LSPASL derivation for the
sequent G; Γ ` ∆ then there is an LSPASL derivation Π′ of the
sequent G[y/x]; Γ[y/x] ` ∆[y/x] such that ht(Π′) ≤ ht(Π).

Lemma 2.3 (Admissibility of weakening). If G; Γ ` ∆ is deriv-
able in LSPASL, then for all structures G,Γ′ and ∆′, the sequent
G;G′; Γ; Γ′ ` ∆; ∆′ is derivable with the same height in LSPASL.



Lemma 2.4 (Invertibility). If Π is a cut-freeLSPASL derivation of
the conclusion of a rule, then there is a cut-freeLSPASL derivation
for each premise, with height at most ht(Π).

Lemma 2.5 (Admissibility of contraction). If G;G; Γ; Γ ` ∆; ∆
is derivable in LSPASL, then G; Γ ` ∆ is derivable with the same
height in LSPASL.

Theorem 2.6 (Cut-elimination). If G; Γ ` ∆ is derivable in
LSPASL then it is derivable without using the cut rule.

Proof. The proof follows the same structure as that for LSBBI ,
utilising the lemmas above. The additional cases we need to con-
sider are those involving the rules P and C; their treatment is sim-
ilar to that for Eq1 in the proof for LSBBI [16].

3. Completeness of LSPASL
We prove the completeness of LSPASL with respect to the Kripke
relational semantics by a counter-model construction. A standard
way to construct a counter-model for an unprovable sequent is to
show that it can be saturated by repeatedly applying all applica-
ble inference rules to reach a limit sequent where a counter-model
can be constructed. In adopting such a counter-model construction
strategy to LSPASL we encounter difficulty in formulating the sat-
uration conditions for rules involving label substitutions. We there-
fore adopt the approach of Hóu et al [16], using an intermediate
system without explicit use of label substitutions, but where equiv-
alences between labels are captured via an entailment `E .

Let r be an instance of a structural rule in which the substitu-
tion used is θ: this is the identity substitution except when r isEq1,
Eq2, P orC. We can view r (upwards) as a function that takes a set
of relational atoms (in the conclusion of the rule) and outputs an-
other set (in the premise). We write r(G, θ) for the output relational
atoms of an instance of r with substitution θ and with conclusion
containing G. Let σ be a sequence of instances of structural rules
[r1(G1, θ1); · · · ; rn(Gn, θn)]. Given a set of relational atoms G, the
result of the (backward) application of σ to G, denoted by S(G, σ),
is defined as below, where a is used for sequence concatenation:

S(G, σ) =


G if σ = [ ]
S(Gθ ∪ r(G′, θ), σ′) if G′ ⊆ G and

σ = [r(G′, θ)]aσ′
undefined otherwise

Given σ = [r1(G1, θ1); · · · ; rn(Gn, θn)], let subst(σ) be the com-
posite substitution θ1 ◦ · · · ◦ θn, where t(θ1 ◦ θ2) means (tθ1)θ2.
We write s ≡ t to mean that s and t are syntactically equal.

Definition 3.1 (Equivalence entailment). Let G be a set of rela-
tional atoms. The entailment relation G `E (a = b) holds iff
there exists a sequence σ of Eq1, Eq2, P, C applications such that
S(G, σ) is defined, and aθ ≡ bθ, where θ = subst(σ).

Since substitution is no longer in the calculus, some inference
rules that involve matching two equal labels need to be changed.
We define the intermediate system ILSPASL as LSPASL minus
{Eq1, Eq2, P, C}, with certain rules changed following Fig. 2.
Note that the equivalence entailment `E is not a premise, but rather
a condition of the rules.

Given a set of relational atoms G, we define the relation =G as
follows: a =G b iff G `E (a = b). We show next that =G is in fact
an equivalence relation. This equivalence relation will be useful in
our counter-model construction later.

Lemma 3.1. Let G be a set of relational atoms, if G `E (a = b)
by applying σ1 and G `E (c = d) by applying σ2, then ∃σ3 such
that S(G, σ1) `E (cθ = dθ) by σ3, where θ = subst(σ1).

Proof. Note that S(G, σ1) = Gθ. So essentially we need to show
that if G `E (c = d), then Gθ `E (cθ = dθ). This is a
consequence of the substitution Lemma 2.2.

Lemma 3.2. Given a set of relational atoms G, the relation =G is
an equivalence relation on the set of labels.

Proof. We show that `E satisfies the following conditions:

Reflexivity: for any label a that occurs in G, we have G `E (a =
a) by applying an empty sequence of Eq1, Eq2, P, C rules.

Symmetry: if G `E (x = y), via a sequence σ of Eq1, Eq2, P, C
applications. Let θ = subst(σ), then by definition xθ ≡ yθ in
Gθ. Thus yθ ≡ xθ, and we obtain that G `E (y = x).

Transitivity: if G `E (x = y) and G `E (y = z), then
by Lemma 3.1 we obtain a sequence σ of Eq1, Eq2, P, C
applications, and let θ = subst(σ), then xθ ≡ yθ ≡ zθ. Thus
G `E (x = z).

The intermediate system ILSPASL is equivalent to LSPASL,
i.e., every sequent provable in ILSPASL is also provable in
LSPASL, and vice versa. This connection is easy to make, as is
shown by Hóu et al. [16]. Properties such as contraction admissi-
bility, closure under substitution etc. also hold for ILSPASL.

Lemma 3.3. The intermediate labelled calculus ILSPASL is
equivalent to LSPASL.

We now give a counter-model construction procedure for
ILSPASL which, by Lemma 3.3, applies to LSPASL as well.
In the construction, we assume that labelled sequents such as
G; Γ ` ∆ are built from sets G,Γ,∆ rather than multisets. This is
harmless since contraction is admissible in our calculus.

As the counter-model construction involves infinite sets and
sequents, we extend the definition of `E appropriately as below.

Definition 3.2. A (possibly infinite) set G of relational atoms
satisfies G `E (x = y) iff Gf `E (x = y) for some finite Gf ⊆ G.

Given a set of relational atoms G, the equivalence relation =G
partitions L into equivalence classes [a]G for each label a ∈ L:

[a]G = {a′ ∈ L | a =G a
′}.

The counter-model procedure is essentially a procedure to sat-
urate a sequent by applying all applicable rules repeatedly. The
aim is to obtain an infinite saturated sequent from which a counter-
model can be extracted. We first define a list of desired properties
of such an infinite sequent which would allow the counter-model
construction. This is given in the following definition.

Definition 3.3 (Hintikka sequent). A labelled sequent G; Γ ` ∆
is a Hintikka sequent if it satisfies the following conditions for any
formulae A,B and any labels a, a′, b, c, d, e, z:

1. It is not the case that a : A ∈ Γ, b : A ∈ ∆ and a =G b.
2. If a : A ∧B ∈ Γ then a : A ∈ Γ and a : B ∈ Γ.
3. If a : A ∧B ∈ ∆ then a : A ∈ ∆ or a : B ∈ ∆.
4. If a : A→ B ∈ Γ then a : A ∈ ∆ or a : B ∈ Γ.
5. If a : A→ B ∈ ∆ then a : A ∈ Γ and a : B ∈ ∆.
6. If a : >∗ ∈ Γ then a =G ε.
7. If a : >∗ ∈ ∆ then a 6=G ε.
8. If z : A ∗ B ∈ Γ then ∃x, y, z′ such that (x, y . z′) ∈ G,
z =G z

′, x : A ∈ Γ and y : B ∈ Γ.
9. If z : A ∗B ∈ ∆ then ∀x, y, z′ if (x, y . z′) ∈ G and z =G z

′

then x : A ∈ ∆ or y : B ∈ ∆.
10. If z : A−∗ B ∈ Γ then ∀x, y, z′ if (x, z′ .y) ∈ G and z =G z

′,
then x : A ∈ ∆ or y : B ∈ Γ.



G `E (w1 = w2)
id

G; Γ;w1 : p ` w2 : p; ∆

G `E (w = ε)
>∗R

G; Γ ` w : >∗; ∆

(x,w . x′); (y, y . w); (x, y . x′);G; Γ ` ∆ (x, y . x′);G `E (x = x′)
AC

(x, y . x′);G; Γ ` ∆

(u,w . z); (y, v . w); (x, y . z); (u, v . x′);G; Γ ` ∆ (x, y . z); (u, v . x′);G `E (x = x′)
A

(x, y . z); (u, v . x′);G; Γ ` ∆

(x, y . w′);G; Γ ` x : A;w : A ∗B; ∆ (x, y . w′);G; Γ ` y : B;w : A ∗B; ∆ (x, y . w′);G `E (w = w′)
∗R

(x, y . w′);G; Γ ` w : A ∗B; ∆

(x,w′ . z);G; Γ;w : A−∗ B ` x : A; ∆ (x,w′ . z);G; Γ;w : A−∗ B; z : B ` ∆ (x,w′ . z);G `E (w = w′)
−∗ L

(x,w′ . z);G; Γ;w : A−∗ B ` ∆

Side condition: the label w in A,AC does not occur in the conclusion.

Figure 2. Changed rules in the intermediate system ILSPASL.

11. If z : A−∗ B ∈ ∆ then ∃x, y, z′ such that (x, z′ . y) ∈ G,
z =G z

′, x : A ∈ Γ and y : B ∈ ∆.
12. For any label m ∈ L, (m, ε . m) ∈ G.
13. If (a, b . c) ∈ G then (b, a . c) ∈ G.
14. If (a, b . c) ∈ G and (d, e . a′) ∈ G and a =G a

′, then ∃f, f ′
such that (d, f . c) ∈ G, (b, e . f ′) ∈ G and f =G f

′.
15. a : ⊥ 6∈ Γ and a : > 6∈ ∆.

Lemma 3.4. Every Hintikka sequent is falsifiable.

Proof. Let G; Γ ` ∆ be a Hintikka sequent. We construct an
extended modelM = (H, .G , εG , ν, ρ) as follows:

• H = {[a]G | a ∈ L}
• .G([a]G , [b]G , [c]G) iff ∃a′, b′, c′.(a′, b′ . c′) ∈ G, a =G a′,
b =G b

′, c =G c
′

• εG = [ε]G
• ν(p) = {[a]G | a : p ∈ Γ} for every p ∈ V ar
• ρ(a) = [a]G for every a ∈ L.

To reduce clutter, we shall drop the subscript G in [a]G and write
[a], [b] .G [c] instead of .G([a], [b], [c]).

We first show thatF = (H, .G , εG) is a PASL Kripke relational
frame. The identity, commutativity and associativity properties of
F follow immediately from Definition 3.3, clause 12, 13, and 14,
respectively. We next show partial-determinism and cancellativity:

Partial-determinism: If [a], [b] .G [c] and [a], [b] .G [d] hold,
then there exists some (a′, b′ . c′) ∈ G and (a′′, b′′ . d′) ∈ G such
that [a] = [a′] = [a′′], [b] = [b′] = [b′′], [c] = [c′], [d] = [d′].
Then by Lemma 3.1, G `E (c′ = d′) by using rule P to unify c′

and d′, thus we obtain that [c] = [c′] = [d] = [d′].
Cancellativity: If [a], [b] .G [c] and [a], [d] .G [c] hold, then we

can find some (a′, b′ . c′) ∈ G and (a′′, d′ . c′′) ∈ G such that
[a] = [a′] = [a′′], [c] = [c′] = [c′′], [b] = [b′], [d] = [d′]. Then by
Lemma 3.1, G `E (b′ = c′) by using C to unify b′ and c′, thus we
obtain that [b] = [b′] = [c] = [c′].

So M is indeed a model based on a PASL Kripke relational
frame. We show next that G; Γ ` ∆ is falsifiable inM. We need to
show the following (where ρ(m) = [m]):

(1) If (a, b . c) ∈ G then ([a], [b] .G [c]).
(2) If m : A ∈ Γ thenM, ρ(m) 
 A.
(3) If m : A ∈ ∆ thenM, ρ(m) 6
 A.

Item (1) follows from the definition of .G . We prove (2) and (3)
simultaneously by induction on the size of A. In the following, to
simplify presentation, we omit theM from the forcing relation.

Base cases: when A is an atomic proposition p.
• If m : p ∈ Γ then [m] ∈ ν(p) by definition of ν, so

[m] 
 p.

• Suppose m : p ∈ ∆, but [m] 
 p. Then m′ : p ∈ Γ, for
some m′ such that m′ =G m. This violates condition 1 in
Def. 3.3. Thus [m] 6
 p.

Inductive cases: when A is a compound formula. We show here
the interesting cases involving multiplicative connectives:
• If m : >∗ ∈ Γ then [m] = [ε] by condition 6 in Def. 3.3.

Since [ε] 
 >∗, we obtain [m] 
 >∗.
• If m : >∗ ∈ ∆, by condition 7 in Def. 3.3, [m] 6= [ε] and

then [m] 6
 >∗.
• If m : A ∗ B ∈ Γ, by condition 8 in Def. 3.3, ∃a, b,m′

such that (a, b . m′) ∈ G and [m] = [m′] and a : A ∈ Γ
and b : B ∈ Γ. By the induction hypothesis, [a] 
 A and
[b] 
 B. Thus [a], [b] .G [m] holds and [m] 
 A ∗B.
• If m : A ∗ B ∈ ∆, by condition 9 in Def. 3.3, ∀a, b,m′

if (a, b . m′) ∈ G and [m] = [m′], then a : A ∈ ∆ or
b : B ∈ ∆. By the induction hypothesis, if such a, b exist,
then [a] 6
 A or [b] 6
 B. For any [a], [b] .G [m], there
must be some (a′, b′ . m′′) ∈ G such that [a] = [a′], [b] =
[b′], [m] = [m′′]. Then [a] = [a′] 6
 A or [b] = [b′] 6
 B
therefore [m] 6
 A ∗B.
• If m : A−∗ B ∈ Γ, by condition 10 in Def. 3.3, ∀a, b,m′

if (a,m′ . b) ∈ G and [m] = [m′], then a : A ∈ ∆ or
b : B ∈ Γ. By the induction hypothesis, if such a, b exists,
then [a] 6
 A or [b] 
 B. Consider any [a], [m] .G [b], there
must be some (a′,m′′ . b′) ∈ G. So [a] = [a′] 6
 A or
[b] = [b′] 
 B, thus [m] 
 A−∗ B.
• If m : A−∗ B ∈ ∆, by condition 11 in Def. 3.3, ∃a, b,m′

such that (a,m′ . b) ∈ G and [m] = [m′] and a : A ∈ Γ
and b : B ∈ ∆. By the induction hypothesis, [a] 
 A and
[b] 6
 B and [a], [m] .G [b] holds, thus [m] 6
 A−∗ B.

To prove the completeness of ILSPASL, we have to show that
any given unprovable sequent can be extended to a Hintikka se-
quent. To do so we need a way to enumerate all possible applicable
rules in a fair way so that every rule will be chosen infinitely of-
ten. Traditionally, this is achieved via a fair enumeration strategy of
every principal formula of every rule. Since our calculus contains
structural rules with no principal formulas, we need to include them
in the enumeration strategy as well. For this purpose, we define a
notion of extended formulae, given by the grammar:

ExF ::= F | U | E | A | AC

where F is a formula, and U,E,A,AC are constants. The intention
is that U,E,A,AC will be as used as “dummy” principal formulae
for the structural rules U , E, A, and AC , respectively. A scheduler
then determines the sequence of rule applications to apply.

Definition 3.4. A schedule is a tuple (O,m,ExF,R), where O is
either 0 (left) or 1 (right),m is a label,ExF is an extended formula



and R is a set of relational atoms such that |R| ≤ 2. Let S denote
the set of all schedules. A scheduler is a function from the set of
natural numbersN to S. A scheduler φ is fair if for every schedule
S, the set {i | φ(i) = S} is infinite.

Lemma 3.5. There exists a fair scheduler.

Proof. Our proof follows a similar proof in [20]. To adapt their
proof, we need to show that the set S is countable, which follows
from the fact that S is a finite product of countable sets.

From now on, we shall fix a fair scheduler, which we call φ. We
assume that the set of labels L is totally ordered, and its elements
can be enumerated as a0, a1, a2, . . .where a0 = ε. This indexing is
used to select fresh labels in our construction of Hintikka sequents.

We say the formula F is not cut-free provable in ILSPASL if
the sequent ` w : F is not cut-free derivable in ILSPASL for
any label w 6= ε. Since we shall be concerned only with cut-free
provability, in the following when we mention derivation, we mean
cut-free derivation.

Definition 3.5. Let F be a formula which is not cut-free provable
in ILSPASL. We construct a series of finite sequents {Gi; Γi `
∆i}i∈N from F where G1 = Γ1 = ∅ and ∆1 = a1 : F .

Assuming that Gi; Γi ` ∆i has been defined, we define
Gi+1; Γi+1 ` ∆i+1 as follows. Suppose we have the schedule
φ(i) = (Oi,mi, ExFi, Ri).

• If Oi = 0, ExFi is a PASL formula Ci and mi : Ci ∈ Γi:
If Ci = F1 ∧ F2, then Gi+1 = Gi, Γi+1 = Γi ∪ {mi :
F1,mi : F2}, ∆i+1 = ∆i.
If Ci = F1 → F2. If there is no derivation for Gi; Γi `
mi : F1; ∆i then Γi+1 = Γi, ∆i+1 = ∆i ∪ {mi : F1}.
Otherwise Γi+1 = Γi ∪ {mi : F2}, ∆i+1 = ∆i. In both
cases, Gi+1 = Gi.
If Ci = >∗, then Gi+1 = Gi ∪ {(ε,mi . ε)}, Γi+1 = Γi,
∆i+1 = ∆i.
If Ci = F1 ∗ F2, then Gi+1 = Gi ∪ {(a2i, a2i+1 . mi)},
Γi+1 = Γi ∪ {a2i : F1, a2i+1 : F2}, ∆i+1 = ∆i.
If Ci = F1−∗ F2 and Ri = {(x,m . y)} ⊆ Gi and
Gi `E (m = mi). If Gi; Γi ` x : F1; ∆i has no derivation,
then Γi+1 = Γi, ∆i+1 = ∆i ∪ {x : F1}. Otherwise
Γi+1 = Γi ∪ {y : F2}, ∆i+1 = ∆i. In both cases,
Gi+1 = Gi.

• If Oi = 1, ExFi is a PASL formula Ci, and mi : Ci ∈ ∆:
If Ci = F1 ∧ F2. If there is no derivation for Gi; Γi `
mi : F1; ∆i then ∆i+1 = ∆i ∪ {mi : F1}. Otherwise
∆i+1 = ∆i ∪ {mi : F2}. In both cases, Gi+1 = Gi and
Γi+1 = Γi.
If Ci = F1 → F2, then Γi+1 = Γ ∪ {mi : F1},
∆i+1 = ∆i ∪ {mi : F2}, and Gi+1 = Gi.
Ci = F1 ∗ F2 and Ri = {(x, y . m)} ⊆ Gi and Gi `E
(mi = m). If Gi; Γi ` x : F1; ∆i has no derivation, then
∆i+1 = ∆i∪{x : F1}. Otherwise ∆i+1 = ∆i∪{y : F2}.
In both cases, Gi+1 = Gi and Γi+1 = Γi.
If Ci = F1−∗ F2, then Gi+1 = Gi ∪ {(a2i,mi . a2i+1)},
Γi+1 = Γi ∪ {a2i : F1}, and ∆i+1 = ∆i ∪ {a2i+1 : F2}.

• If ExFi ∈ {U,E,A,AC}, we proceed as follows:
IfExFi = U,Ri = {(an, ε.an)}, where n ≤ 2i+1, then
Gi+1 = Gi ∪ {(an, ε . an)}, Γi+1 = Γi, ∆i+1 = ∆i.
If ExFi = E, Ri = {(x, y . z)} ⊆ Gi, then Gi+1 =
Gi ∪ {(y, x . z)}, Γi+1 = Γi, ∆i+1 = ∆i.
IfExFi = A,Ri = {(x, y.z); (u, v.x′)} ⊆ Gi and Gi `E
(x = x′), then Gi+1 = Gi ∪ {(u, a2i . z), (y, v . a2i)},
Γi+1 = Γi, ∆i+1 = ∆i.

If ExFi = AC , Ri = {(x, y . x′)} ⊆ Gi, and Gi `E (x =
x′) then Gi+1 = Gi∪{(x, a2i.x), (y, y.a2i)}, Γi+1 = Γi,
∆i+1 = ∆i.

• In all other cases, Gi+1 = Gi, Γi+1 = Γi and ∆i+1 = ∆i.

Intuitively, each tuple (Oi,mi, ExFi, Ri) corresponds to a po-
tential rule application . If the components of the rule application
are in the current sequent, we apply the corresponding rule to these
components. The indexing of labels guarantees that the choice of
a2i and a2i+1 are always fresh for the sequent Gi; Γi ` ∆i. The
construction in Def. 3.5 non-trivially extends a similar construc-
tion of Hintikka CSS due to Larchey-Wendling [20], in addition to
which we have to consider the cases for structural rules.

We say G′; Γ′ ` ∆′ ⊆ G; Γ ` ∆ iff G′ ⊆ G, Γ′ ⊆ Γ and
∆′ ⊆ ∆. A labelled sequent G; Γ ` ∆ is finite if G,Γ,∆ are finite
sets. Define G′; Γ′ ` ∆′ ⊆f G; Γ ` ∆ iff G′; Γ′ ` ∆′ ⊆ G; Γ ` ∆
and G′; Γ′ ` ∆′ is finite. If G; Γ ` ∆ is a finite sequent, it
is consistent iff it does not have a derivation in ILSPASL. A
(possibly infinite) sequent G; Γ ` ∆ is finitely-consistent iff every
G′; Γ′ ` ∆′ ⊆f G; Γ ` ∆ is consistent.

We write Li for the set of labels occurring in the sequent
Gi; Γi ` ∆i. Thus L1 = {a1}. The following lemma states some
obvious properties of the construction of the sequents Gi; Γi ` ∆i.
This can be proved by a simple induction on i.

Lemma 3.6. For any i ∈ N , the following properties hold:

1. Gi; Γi ` ∆i has no derivation
2. Li ⊆ {a0, a1, · · · , a2i−1}
3. Gi; Γi ` ∆i ⊆f Gi+1; Γi+1 ` ∆i+1

Given the construction of the series of sequents we have just
seen above, we define a notion of a limit sequent, as the union of
every sequent in the series.

Definition 3.6 (Limit sequent). Let F be a formula unprovable in
ILSPASL. The limit sequent for F is the sequent Gω; Γω ` ∆ω

where Gω =
⋃

i∈N Gi and Γω =
⋃

i∈N Γi and ∆ω =
⋃

i∈N ∆i

and where Gi; Γi ` ∆i is as defined in Definition 3.5.

Lemma 3.7. If F is a formula unprovable in ILSPASL, then the
limit labelled sequent for F is a Hintikka sequent.

Proof. Let Gω; Γω ` ∆ω be the limit sequent. First we show
that Gω; Γω ` ∆ω is finitely-consistent. Consider any G; Γ `
∆ ⊆f Gω; Γω ` ∆ω , we show that G; Γ ` ∆ has no derivation.
Since G,Γ,∆ are finite sets, there exists i ∈ N s.t. G ⊆ Gi,
Γ ⊆ Γi, and ∆ ⊆ ∆i. Moreover, Gi; Γi ` ∆i is not provable
in ILSPASL. Since weakening is admissible in ILSPASL, G; Γ `
∆ ⊆f Gi; Γi ` ∆i cannot be provable either. So condition 1, 7
and 15 in Definition 3.3 hold for the limit sequent, for otherwise
we would be able to construct a provable finite labelled sequent
from the limit sequent. We show the proofs that the other conditions
in Definition 3.3 involving multiplicative connectives and structural
rules are also satisfied by the limit sequent; the cases (1-5) and (15)
for the additives are straightforward and are therefore omitted here.

6. If m : >∗ ∈ Γω , then m : >∗ ∈ Γi for some i ∈ N
since each labelled formula from Γω must appear somewhere
in the sequence. Then there exists j > i such that φ(j) =
(0,m,>∗, R) where this formula becomes principal. By con-
struction (ε,m . ε) ∈ Gj+1 ⊆ Gω . Then Gω `E (m = ε)
because Gj+1 `E (m = ε). So m =Gω ε.

8. If m : F1 ∗ F2 ∈ Γω , then it is in some Γi, where i ∈ N .
Then there exists j > i such that φ(j) = (0,m, F1 ∗ F2, R).
By construction Gj+1 = Gj ∪ {(a2j , a2j+1 . m)} ⊆ Gω , and
Γj+1 = Γj ∪ {a2j : F1, a2j+1 : F2} ⊆ Γω .



9. If m : F1 ∗ F2 ∈ ∆ω , then it is in some ∆i, where i ∈ N . For
any (x, y .m′) ∈ Gω such that Gω `E (m = m′), there exists
j > i such that (x, y . m′) ∈ Gj and Gj `E (m = m′). Also,
there exists k > j such that φ(k) = (1,m, F1 ∗ F2, {(x, y .
m′)}) where the labelled formula becomes principal. Since
(x, y . m′) ∈ Gk and Gk ` (m = m′), we have either
x : F1 ∈ ∆k+1 ⊆ ∆ω or y : F2 ∈ ∆k+1 ⊆ ∆ω.

10. If m : F1−∗ F2 ∈ Γω , similar to case 8.
11. If m : F1−∗ F2 ∈ ∆ω , similar to case 9.
12. For each an ∈ L, there is a j ≥ n such that φ(j) =

(O,m,U, {(an, ε . an)}) where U is applied to an. Then
Gj+1 = Gj ∪ {(an, ε . an)} ⊆ Gω , because n ≤ 2j + 1.

13. If (x, y . z) ∈ Gω , then it is in some Gi, where i ∈ N . Then
there is a j > i such that φ(j) = (O,m,E, {(x, y .z)}) where
E is applied. Then Gj+1 = Gj ∪ {(y, x . z)} ⊆ Gω .

14. If (x, y . z) ∈ Gω , (u, v . x′) ∈ Gω , and x =Gω x′, then there
is some Gi, i ∈ N such that {(x, y . z), (u, v . x′)} ⊆ Gi and
Gi `E (x = x′). There are two cases to consider, depending on
whether (x, y . z) and (u, v .x′) are the same relational atoms.
Suppose they are distinct. Then there must be some j > i such
that φ(j) = (O,m,A, {(x, y . z), (u, v . x′)}). Then {(x, y .
z), (u, v . x′)} ∈ Gj and Gj `E (x = x′). By construction we
obtain that Gj+1 = Gj ∪ {(u, a2j . z), (y, v . a2j)} ⊆ Gω . If
(x, y . z) and (u, v . x′) are the same relational atom, then a
similar argument can be applied, but in this case the schedule to
choose is one which selects AC rather than A.

Theorem 3.8 (Completeness). Every formula F unprovable in
ILSPASL is not valid (in PASL relational Kripke models).

Proof. We construct a limit sequent Gω; Γω ` ∆ω for F following
Definition 3.6. By the construction of the limit sequent, we have
a1 : F ∈ ∆ω. By Lemma 3.7, this limit sequent is a Hintikka
sequent, and therefore by Lemma 3.4, Gω; Γω ` ∆ω is falsifiable.
This means there exists a model (F , ν, ρ) that satisfies Gω and Γω

and falsifies every element of ∆ω , including a1 : F , which means
that F is false at world ρ(a1). Thus F is not valid.

4. Extensions of PASL
We now consider some extensions of PASL obtained by imposing
additional properties on the semantics, as suggested by Dockins
et al [11]. We show that sound rules for indivisible unit and the
stronger property of disjointness can be added to our labelled se-
quent calculus without jeopardising our completeness proof, but
that the more exotic properties of splittability and cross-split are
not fully compatible with our current framework.

Indivisible unit. The unit ε in a commutative monoid (H, ◦, ε) is
indivisible iff the following holds for any h1, h2 ∈ H:

∀h1, h2 ∈ H. if h1 ◦ h2 = ε then h1 = ε. (1)

Relationally, this corresponds to the first-order condition:

∀h1, h2 ∈ H. if R(h1, h2, ε) then h1 = ε (2)

Note that this also means that h2 = ε whenever h1 ◦ h2 = ε.
Most memory models in the literature have indivisible unit [5],
so this property seems appropriate for reasoning about concrete
applications of separation logic. Indivisible unit can be axiomatised
by the following formula [6]:

>∗ ∧ (A ∗B)→ A

We use the following sound rule to capture this property:

(ε, y . ε);G[ε/x]; Γ[ε/x] ` ∆[ε/x]
IU

(x, y . ε);G; Γ ` ∆

Note that we can then instantiate the label y to ε by applying Eq1
upwards. Recall that the sequent calculus LSBBI [16] is just the
sequent calculus LSPASL minus the rules C and P .

Proposition 4.1. The formula >∗ ∧ (A ∗ B) → A is provable in
LSBBI + IU. The proof is as shown in Figure 3 (a).

Theorem 4.2. LSPASL + IU is sound and cut-free complete
with respect to the class of PASL Kripke relational frames (and
separation algebras) with indivisible unit.

Proof. Soundness is straightforward as the rule IU essentially just
encodes the first-order formula (2) into the labelled sequent cal-
culus. Completeness can be proved via the same counter-model
construction for LSPASL (Theorem 3.8). That is, we first de-
fine an intermediate calculus ILSPASL + IU that is equiva-
lent to LSPASL + IU , and do counter-model construction in
ILSPASL + IU . Since the IU rule contains substitution, the rule
will be localised into the entailment relation `E , so the definition
of `E in Definition 3.1 is modified to allowed IU in addition to
Eq1, Eq2, P and C. Thus the rules of ILSPASL + IU are exactly
the same as ILSPASL, and the only change is in the definition of
`E . The equivalence betweenLSPASL+IU and ILSPASL+IU
can be proved as in Lemma 3.3.

We then show that a Hintikka sequent yields a Kripke relational
frame that corresponds to a separation algebra with indivisible
unit. No additional clauses are needed in the definition of Hintikka
sequent since it is parametric on the entailment relation `E .

For a Hintikka sequent G; Γ ` ∆, suppose (H, .G , [ε]) is the
PASL Kripke relational frame generated by G. Given any [a], [b].G
[ε], we can find a (a′, b′ . c′) ∈ G such that [a] = [a′], [b] =
[b′], [ε] = [c′]. Also, we can use the rule IU to derive G `E
(a′ = ε). Thus by Lemma 3.1, we obtain [a] = [a′] = [ε]. So
the structure (H, .G , [ε]) generated by G is indeed a PASL Kripke
relational frame that obeys indivisible unit.

The saturation with logical and structural rules E,U,A,AC is
then the same as in Sec. 3.

Disjointness. The separating conjunction ∗ in separation logic
requires that the two combined heaps have disjoint domains [29].
In a separation algebra (H, ◦, ε), disjointness is defined by the
following additional requirement:

∀h1, h2 ∈ H. if h1 ◦ h1 = h2 then h1 = ε (3)

Relationally, this corresponds to the first-order condition:

∀h1, h2 ∈ H. if R(h1, h1, h2) then h1 = ε (4)

The disjointness condition is captured in labelled sequent cal-
culus by the following rule, where x, y are labels.

(ε, ε . y);G[ε/x]; Γ[ε/x] ` ∆[ε/x]
D

(x, x . y);G; Γ ` ∆

In fact disjointness implies indivisible unit (but not vice versa),
as shown by Dockins et al. [11]. Thus we can prove the axiom for
indivisible unit by using LSBBI +D.

Proposition 4.3. The formula >∗ ∧ (A ∗ B) → A is provable in
LSBBI + D. Figure 3(b) shows the derivation of the formula; we
highlight the principal relational atoms where they are not obvious.

Theorem 4.4. LSPASL + D is sound and cut-free complete with
respect to the class of Kripke relational frames (and separation
algebras) with disjointness.

Proof. Similar to Theorem 4.2.



id

(ε, a2 . ε); ε : A; a2 : B ` ε : A
IU

(a1, a2 . ε); a1 : A; a2 : B ` ε : A
>∗L

(a1, a2 . a0); a0 : >∗; a1 : A; a2 : B ` a0 : A
∗L

; a0 : >∗; a0 : A ∗B ` a0 : A
∧L

; a0 : >∗ ∧ (A ∗B) ` a0 : A
→ R

; ` a0 : (>∗ ∧ (A ∗B))→ A

id

(ε, ε . ε); · · · ; ε : A; ε : B ` ε : A
Eq1

(ε, a1 . ε); · · · ; a1 : A; ε : B ` ε : A
E

(a1, w2 . w1);(ε, ε . w2); (a1, ε . ε) ;· · · ; a1 : A; ε : B ` ε : A
D

(a1, w2 . w1); (a2, a2 . w2) ; (a1, a2 . ε); · · · ; a1 : A; a2 : B ` ε : A
A

(a1, w1 . ε); (ε, a2 . w1); (a1, a2 . ε) ; · · · ; a1 : A; a2 : B ` ε : A
A

(ε, ε . ε); (a1, a2 . ε); a1 : A; a2 : B ` ε : A
U

(a1, a2 . ε); a1 : A; a2 : B ` ε : A
>∗L

(a1, a2 . a0); a0 : >∗; a1 : A; a2 : B ` a0 : A
∗L

; a0 : >∗; a0 : A ∗B ` a0 : A
∧L

; a0 : >∗ ∧ (A ∗B) ` a0 : A
→ R

; ` a0 : >∗ ∧ (A ∗B)→ A

(a) (b)

Figure 3. Derivations of the axiom of indivisible unit in: (a) LSBBI + IU and (b) LSBBI +D.

Splittability and cross-split The property of infinite splittability
is sometimes useful when reasoning about the kinds of resource
sharing that occur in divide-and-conquer style computations [11].
A monoid (H, ◦, ε) has splittability if for every h0 ∈ H \{ε}, there
are h1, h2 ∈ H \ {ε} such that h1 ◦ h2 = h0. Relationally, this
corresponds to: if h0 6= ε then there exist h1 6= ε, h2 6= ε such
that R(h1, h2, h0). This property can be axiomatised as the BBI
formula ¬>∗ → (¬>∗ ∗ ¬>∗) [6]. We give the following rule for
splittability, where x, y are fresh:

(x, y . z);G; Γ ` x : >∗; y : >∗; z : >∗∆
S

G; Γ ` z : >∗; ∆

Proposition 4.5. The rule S for splittability is sound.

Proof. Assume the conclusion of S is falsifiable in an extended
relational model (H,R, ε, v, ρ); we show that the premise is also
falsifiable. So suppose that everything in G ∪ Γ is true, and every-
thing in {z : >∗} ∪ ∆ is false in the model. Specifically, z : >∗
is false, meaning ρ(z) 6
 >∗, thus ρ(z) 6= ε. By splittability, there
exist some h1, h2 ∈ H \ {ε} such that R(h1, h2, ρ(z)) holds. Let
ρ′ = ρ∪{x 7→ h1, y 7→ h2}. Then (x, y.z) is true under ρ′. Also,
since ρ′(x) 6= ε and ρ′(y) 6= ε, the labelled formulae x : >∗ and
y : >∗ are false under ρ′. Thus the model with frame (H,R, ε),
valuation v, and label mapping ρ′ falsifies the premise.

Proposition 4.6. The axiom ¬>∗ → (¬>∗∗¬>∗) for splittability
is provable in LSBBI + S.

Proof. We start from ¬>∗ → (¬>∗ ∗ ¬>∗), and obtain the
following derivation backward:

(a1, a2 . a0); ` a1 : >∗; a2 : >∗; a0 : >∗; a0 : ¬>∗ ∗ ¬>∗
S

; ` a0 : >∗; a0 : ¬>∗ ∗ ¬>∗
¬L

; a0 : ¬>∗ ` a0 : ¬>∗ ∗ ¬>∗
→ R

; ` a0 : ¬>∗ → (¬>∗ ∗ ¬>∗)

Then we can apply ∗R (backwards) on the top sequent using the
relational atom (a1, a2 . a0) to obtain the premises SL and SR.
The left premise SL can be proved as follows:

>∗R
(ε, a2 . a0);` ε : >∗; · · ·

>∗L
(a1, a2 . a0); a1 : >∗ ` a1 : >∗; · · ·

¬R
(a1, a2 . a0); ` a1 : ¬>∗; a1 : >∗; · · ·

The right premise SR can be proved similarly.

Note that the rule S creates new labels in the premise, as the
rule A does. However, it also has a principal formula, so it is not a
structural rule. Unlike the rules IU andD, the rule S cannot simply
be localised into the entailment relation `E , so we have to extend
the notion of a Hintikka sequent to add a condition corresponding
to splittability. The counter-model construction then has to ensure
that this condition is satisfied by the limit sequent by ensuring that
the rule S is applied in a fair way. We therefore leave the details of
this completeness proof for LSPASL + S to future work.

Cross-split is a rather complicated property. It specifies that if
a heap can be split in two different ways, then there should be
intersections of these splittings. Formally, in a monoid (H, ◦, ε), if
h1 ◦h2 = h0 and h3 ◦h4 = h0, then there should be four elements
h13, h14, h23, h24, informally representing the intersections h1 ∩
h3, h1 ∩ h4, h2 ∩ h3 and h2 ∩ h4 respectively, such that h13 ◦
h14 = h1, h23 ◦ h24 = h2, h13 ◦ h23 = h3, and h14 ◦ h24 =
h4. The corresponding condition on Kripke relational frames is
obvious. The following sound rule naturally captures cross-split,
where p, q, s, t, u, v, x, y, z are labels:

R; (x, y . z); (u, v . z);G; Γ ` ∆
CS

(x, y . z); (u, v . z);G; Γ ` ∆

where R := (p, q . x); (p, s . u); (s, t . y); (q, t . v)

and p, q, s, t do not occur in the conclusion
We conjecture that this rule can be handled in the counter-model
construction by treating it similarly to the rule A. We then need
to change the indexing of labels when constructing the limit se-
quent. Let the rule A choose a4i, the rules ∗L and −∗ R choose
a4i, a4i+1, and the ruleCS choose a4i, a4i+1, a4i+2, a4i+3 as new
labels. Further, let the rule U create the identity relational atom
(an, ε . an) only when n ≤ 4i + 3. Then each Li is a subset of
{a1, · · · , a4i−1}.

Splittability and cross-split are not as frequently used in sep-
aration logic as the other conditions, and they require non-trivial
modifications in our current proofs. We note that Reynolds’ heap
model [29] falsifies splittability, as heaps are finite objects that only
non-trivially split finitely often. On the other hand cross-split is
true in the heap model; however we are not aware of any formu-
lae whose proof requires this property. For these reasons we omit
these from our modular framework of proof systems for PASL.



5. Tailoring the labelled calculus
We now consider various labelled calculi obtained by extending
LSBBI with one or more structural rules that correspond to partial-
determinism (P ), cancellativity (C), indivisible unit (IU), and dis-
jointness (D). Most of the results in this section either directly fol-
low from the proofs in previous sections, or are easy adaptations.
As those conditions for monoids are often given in a modular way,
e.g., in [6, 11], it is not surprising that our structural rules can also
be added modularly to LSBBI , since they just simulate those con-
ditions directly and individually in the labelled sequent calculus.

Calculi without cancellativity. Some notions of separation logic
omit cancellativity [18], so dropping the rule C in LSPASL gives
an interesting system. The proofs in Sec. 3 still work if we just
insist on a partial commutative monoid, and drop C in `E .

Theorem 5.1. The labelled sequent calculus LSBBI +P is sound
and cut-free complete with respect to the partial commutative
monoidal semantics for BBI.

As a result, it is easy to obtain the following sound and complete
labelled calculi for the corresponding semantics: LSBBI +P+IU
andLSBBI+P+D. The proofs are similar to that for Theorem 4.2.

Calculi without partial-determinism. Similar to above, dropping
partial-determinism gives another sound and complete labelled cal-
culus LSBBI +C, although we are not aware of any concrete mod-
els in separation logic that employ this framework.

Theorem 5.2. The labelled sequent calculus LSBBI +C is sound
and cut-free complete with respect to the cancellative commutative
monoidal semantics for BBI.

Again, using a similar argument as in Theorem. 4.2, we can
obtain sound and complete labelled calculi LSBBI +C + IU and
LSBBI + C +D.

Calculi without partial-determinism and cancellativity. The la-
belled calculus LSBBI + IU is sound and complete by Prop. 4.1,
and cut-elimination holds.

Theorem 5.3. The labelled sequent calculusLSBBI+IU is sound
and cut-free complete with respect to the commutative monoidal
semantics for BBI with indivisible unit.

To prove the completeness of the calculus LSBBI + D, we
need to go through the counter-model construction proof, since
disjointness is not axiomatisable. It is easy to check that the proofs
in Section 3 do not break when we define `E by usingEq1, Eq2, D
only, and the Hintikka sequent then gives the BBI Kripke relational
frame that obeys disjointness. The other proofs remain the same.

Theorem 5.4. The labelled sequent calculus LSBBI +D is sound
and cut-free complete with respect to the commutative monoidal
semantics for BBI with disjointness.

To summarise, our approach offers a sound and cut-free calcu-
lus for the extension of BBI with every combination of the proper-
ties P,C, IU,D. The case where none of the properties hold, i.e.
regular BBI, have already been solved [16, 27]. Omitting the cases
covered by the implication of IU by D, this provides us with the
following eleven labelled calculi:

LSBBI + IU LSBBI + C LSBBI +D
LSBBI + P LSPASL(= LSBBI + P + C)
LSBBI + P + IU LSBBI + C + IU LSPASL + IU
LSBBI + P +D LSBBI + C +D LSPASL +D

6. Implementation and experiment
We discuss here an implementation of the proof system LSPASL+
D. It turns out that the AC rule is admissible in this system; in fact

it is admissible in the subsystem LSBBI + C, as shown next, so
we do not implement the AC rule.

Proposition 6.1. The AC rule is admissible in LSBBI + C.

Proof. We show that every derivation in LSBBI +C can be trans-
formed into one with no applications ofAC . It is sufficient to show
that we can eliminate a single application ofAC ; then we can elim-
inate all AC in a derivation successively starting from the topmost
applications in that derivation. So suppose we have a derivation in
LSBBI + C of the form:

Π

(x,w . x); (y, y . w); (x, y . x);G; Γ ` ∆
AC

(x, y . x);G; Γ ` ∆

where w is a new label not in the root sequent. This is transformed
into the following derivation:

Π′

(x, ε . x); (ε, ε . ε);G[ε/y]; Γ[ε/y] ` ∆[ε/y]
U

(x, ε . x);G[ε/y]; Γ[ε/y] ` ∆[ε/y]
C

(x, ε . x); (x, y . x);G; Γ ` ∆
U

(x, y . x);G; Γ ` ∆

where Π′ is obtained by applying the substitutions [ε/x] and [ε/w]
to Π (Lemma 2.2). Note that since w does not occur in the root
sequent, G[ε/x][ε/w] = G[ε/x], Γ[ε/x][ε/w] = Γ[ε/x] and
∆[ε/x][ε/w] = ∆[ε/x]. These substitutions do not introduce new
instances of AC .

Our implementation uses the following strategy when applying
rules on a sequent:

1. Try to close the branch by rules id,⊥L,>∗R,>∗R.

2. If (1) not applicable, apply all possible Eq1, Eq2, P, C, IU,D
rules to unify labels3.

3. If (1-2) not applicable, apply invertible rules ∧L,∧R,→ L,→
R, ∗L,−∗ R,>∗L in all possible ways.

4. If (1-3) not applicable, try rules ∗R or −∗ L by choosing exist-
ing relational atoms.

5. If none of the existing relational atoms are applicable, or all
combinations of ∗R,−∗ L formulae and relational atoms are
already applied in (4), apply structural rules on the set G0 of
relational atoms in the sequent as follows.

(a) Use E to generate all commutative variants of existing rela-
tional atoms in G0, giving a set G1.

(b) Apply A for each applicable pair in G1, generating a set G2.

(c) UseU to generate all identity relational atoms for each label
in G2, giving the set G3.

6. If none of above is applicable, fail.

Step (2) is terminating, because each substitution eliminates a label,
and we only have finitely many labels. Step (5) is not applicable
when G3 = G0. It is also clear that step (5) is terminating. We forbid
applications of the rule A to the pair {(x, y . z), (u, v . x)} when
{(u,w . z), (y, v . w)}, for some label w, (or any commutative
variants of this pair, e.g., {(w, u . z); (v, y . w)}) is already in the
sequent. This is because the created relational atoms in such an A
application can be unified to existing ones by using rules P ,C.

We view Γ,∆ in a sequent G; Γ ` ∆ as lists, and each time
a logical rule is applied, we place the subformulae in the front

3 Although IU is admissible, we keep it because it simplifies proof search.



Formula BBeye FV LSBBI Separata
(opt) (heuristic)

(1) (a−∗ b) ∧ (> ∗ (>∗ ∧ a))→ b 0.076 0.002 0.002
(2) (>∗−∗ ¬(¬a ∗ >∗))→ a 0.080 0.004 0.002
(3) ¬((a−∗ ¬(a ∗ b)) ∧ ((¬a−∗ ¬b) ∧ b)) 0.064 0.003 0.002
(4) >∗ → ((a−∗ (b−∗ c))−∗ ((a ∗ b)−∗ c)) 0.060 0.003 0.002
(5) >∗ → ((a ∗ (b ∗ c))−∗ ((a ∗ b) ∗ c)) 0.071 0.002 0.004
(6) >∗ → ((a ∗ ((b−∗ e) ∗ c))−∗ ((a ∗ (b−∗ e)) ∗ c)) 0.107 0.004 0.008
(7) ¬((a−∗ ¬(¬(d−∗ ¬(a ∗ (c ∗ b))) ∗ a)) ∧ c ∗ (d ∧ (a ∗ b))) 0.058 0.002 0.006
(8) ¬((c ∗ (d ∗ e)) ∧B) where 0.047 0.002 0.013

B := ((a−∗ ¬(¬(b−∗ ¬(d ∗ (e ∗ c))) ∗ a)) ∗ (b ∧ (a ∗ >)))
(9) ¬(C ∗ (d ∧ (a ∗ (b ∗ e)))) where 94.230 0.003 0.053

C := ((a−∗ ¬(¬(d−∗ ¬((c ∗ e) ∗ (b ∗ a))) ∗ a)) ∧ c)
(10) (a ∗ (b ∗ (c ∗ d)))→ (d ∗ (c ∗ (b ∗ a))) 0.030 0.004 0.002
(11) (a ∗ (b ∗ (c ∗ d)))→ (d ∗ (b ∗ (c ∗ a))) 0.173 0.002 0.002
(12) (a ∗ (b ∗ (c ∗ (d ∗ e))))→ (e ∗ (d ∗ (a ∗ (b ∗ c)))) 1.810 0.003 0.002
(13) (a ∗ (b ∗ (c ∗ (d ∗ e))))→ (e ∗ (b ∗ (a ∗ (c ∗ d)))) 144.802 0.003 0.002
(14) >∗ → (a ∗ ((b−∗ e) ∗ (c ∗ d))−∗ ((a ∗ d) ∗ (c ∗ (b−∗ e)))) 6.445 0.003 0.044
(15) ¬(>∗ ∧ (a ∧ (b ∗ ¬(c−∗ (>∗ → a))))) timeout(1000s) 0.003 0.003
(16) ((D → (E−∗ (D ∗ E)))→ (b−∗ ((D → (E−∗ ((D ∗ a) ∗ a))) ∗ b))), where 0.039 0.005 8.772

D := >∗ → a and E := a ∗ a
(17) ((>∗ → (a−∗ (((a ∗ (a−∗ b)) ∗ ¬b)−∗ (a ∗ (a ∗ ((a−∗ b) ∗ ¬b))))))→ timeout(1000s) fail 49.584

((((>∗ ∗ a) ∗ (a ∗ ((a−∗ b) ∗ ¬b)))→ (((a ∗ a) ∗ (a−∗ b)) ∗ ¬b)) ∗ >∗))
(18) (F ∗ F )→ F , where F := ¬(>−∗ ¬>∗) invalid invalid 0.004
(19) (>∗ ∧ (a ∗ b))→ a invalid invalid 0.003

Table 2. Experimental results from the prover Separata.

of the list. Thus our proof search has a “focusing flavour”, that
always tries to decompose the subformulae of a principal formula
if possible. To guarantee completeness, each time we apply a ∗R
or −∗ L rule, the principal formula is moved to the end of the list,
so that each principal formula for non-determinism rules ∗R,−∗ L
is considered fairly, i.e. applied in turn.

We incorporate a number of optimisations in the proof search.
(1) Back-jumping [2] is used to collect the “unsatisfiable core”
along each branch. When one premise of a binary rule has a deriva-
tion, we try to derive the other premise only when the unsatisfiable
core is not included in that premise. (2) A search strategy discussed
by Park et al [27] is also adopted. For ∗R and −∗ L applications,
we forbid the search to consider applying the rule twice with the
same pair of principal formula and principal relational atom, since
the effect is the same as contraction, which is admissible. (3) Previ-
ous work on theorem proving for BBI has shown that associativity
of ∗ is a source of inefficiency in proof search [16, 27]. We borrow
the idea of the heuristic method presented in [16] to quickly solve
certain associativity instances. When we detect z : A ∗ B on the
right hand side of a sequent, we try to search for possible worlds
(labels) for the subformulae of A,B in the sequent, and construct
a binary tree using these labels. For example, if we can find x : A
and y : B in the sequent, we will take x, y as the children of z.
When we can build such a binary tree of labels, the corresponding
relational atoms given by the binary tree will be used (if they are in
the sequent) as the prioritised ones when decomposing z : A ∗ B
and its subformulae. Of course, without a free-variable system, our
handling of this heuristic method is just a special case of the origi-
nal one, but this approach can speed up the search in certain cases.

The experiments in this paper are conducted on a Dell Optiplex
790 desktop with Intel CORE i7 2600 @ 3.4 GHz CPU and 8GB
memory, running Ubuntu 13.04. The theorem provers are written
in Ocaml.

We test our prover Separata for LSPASL + D on the formulae
listed in Table 2; the times displayed are in seconds. We compare
the results with provers for BBI, BBeye [27] and the incomplete
heuristic-based FV LSBBI [16], when the formula is valid in BBI.
We run BBeye in an iterative deepening way, and the time counted
for BBeye is the total time it spends. Formulae (1-14) are used by

Park et al. to test their prover BBeye for BBI [27]. We can see
that for formulae (1-14) the performance of Separata is comparable
with the heuristic based prover for FV LSBBI . Both provers are
generally faster than BBeye. Formula (15) is one that BBeye had
trouble with [16], but Separata handles it trivially. However, there
are cases where BBeye is faster than Separata. We found the exam-
ple formula (16) from a set of testings on randomly generated BBI
theorems. Formula (17) is a converse example where a randomly
generated BBI theorem causes BBeye to time out and FV LSBBI

with heuristics to terminate within the timeout but without finding
a proof due to its incompleteness. Formula (18) is valid only when
the monoid is partial [22], and formula (19) is the axiom of indi-
visible unit. Some interesting cases for disjointness will be shown
later. We do not investigate the details in the performances between
these provers because they are for different logics. We leave further
optimisations for Separata as future work.

7. Future work
In this paper we have focused on propositional inference, but the
assertion language of separation logic is generally taken to include
first-order logic, usually extended with arithmetic, or at least equal-
ity. More importantly, this language is interpreted only with respect
to some concrete semantics, the most well-known of which is the
original heap model of Reynolds [29]. We refer readers to that pa-
per for a more careful description of this model; for the purposes
of this section we will remark that values range across the inte-
gers, and addresses across some specified subset of the integers;
that heaps are finite partial functions from addresses to values; and
that expressions are built up from variables (evaluated with respect
to some store), values, and the usual arithmetic operations.

The advantage of this model is that it supports the interpretation
of the points-to predicate 7→, which allows direct reference to the
contents of the heap: E 7→ E′ is satisfied by a heap iff it is a
singleton map sending the address specified by the expression E to
the value specified by the expression E′.

The question for future research is whether our labelled sequent
calculus and implementation could be extended to reason about
such concrete predicates; this section presents preliminary work



in this direction. While the full power of pointer arithmetic is an
important subject for future work, for the purpose of this work we
set arithmetic aside and let expressions range across store variables
e, e1, e2, . . . only, as is done for example by Berdine et al [3]. The
rules for quantifiers are straightforward, e.g.:

G; Γ;h : F [e/x] ` ∆
∃L

G; Γ;h : ∃x.F ` ∆

G; Γ ` h : F [e/x]; ∆
∃R

G; Γ ` h : ∃x.F ; ∆

where e does not appear free in the conclusion of ∃L.
Equality between variables simply requires that they are as-

signed by the store to the same value, giving rise to the rules

G; Γ[e2/e1] ` ∆[e2/e1]
= L

G; Γ;h : e1 = e2 ` ∆
= R

G; Γ ` h : e = e; ∆

Points-to poses a more complex problem as it involves direct
interaction with the contents of heaps; Fig. 4 presents putative
labelled sequent rules for this predicate. The semantics of e1 7→ e2
first require that the heap be a singleton, which is a spatial property
that can be captured by abstract semantics: a ‘singleton’ world is
not equal to the identity world ε, and cannot be split into two non-ε
worlds. This motivates rules 7→ L1 and 7→ L2. The rules 7→ L3 and
7→ L4 address the content of heaps: 7→ L3 says that two heaps with
the same address (value of e1) must be the same heap, and 7→ L4

says that a singleton heap makes a unique assignment.
Our implementation of the calculus defined by adding these

rules to LSPASL + D is not complete w.r.t. Reynolds’ semantics:
for example it is unable to prove the formula below, which is based
on a property for septraction due to Vafeiadis and Parkinson [32],
and is valid in the heap model:

>∗ → ¬((e1 7→ e2)−∗ ¬(e1 7→ e2)) (5)

This formula essentially asserts that a heap satisfying e1 7→ e2 is
possible to construct, but our prover does not support explicit heap
construction. Nevertheless this incomplete calculus does support
strikingly elegant proofs of non-trivial separation logic inferences,
such as the DISJOINT axiom of Parkinson [28, Cha. 5.3]:

7→ L1

(ε, ε . a0); ε : (e1 7→ e2) ` a0 : ⊥
D

(a1, a1 . a0); a1 : (e1 7→ e2) ` a0 : ⊥
7→ L3

(a1, a2 . a0); a1 : (e1 7→ e2); a2 : (e1 7→ e2) ` a0 : ⊥
∗L

; a0 : (e1 7→ e2) ∗ (e1 7→ e2) ` a0 : ⊥
→ R

; ` a0 : ((e1 7→ e2) ∗ (e1 7→ e2))→ ⊥
Our experimental prover Separata+, extending LSPASL + D

with the rules of this section, has proved a number of tested SL
formulae very rapidly; see Table 3 for some examples. Formulae (1-
3) are taken from Galmiche and Méry [14]; in particular, the first is
the DISJOINT axiom proved above. Formulae (4-6) are taken from
Vafeiadis and Parkinson’s study of magic wand’s De Morgan dual
septraction, ¬(A−∗ ¬B) [32]. These results present encouraging
evidence that the work of this paper may form the basis of practical
theorem proving for the assertion language of separation logic.

Dealing with splittability and cross-split in our labelled calculi
is one of our next goals. We are also interested in extending the
techniques of this paper to concrete semantics other than Reynolds’
heap models, such as those surveyed by Calcagno et al [8] and
Jensen and Birkedal [18].

8. Related work
There are many more automated tools, formalisations, and logical
embeddings for separation logic than can reasonably be surveyed
within the scope of this conference paper. Almost all are not di-
rectly comparable to this paper because they deal with separation
logic for some concrete semantics.

One exception to this concrete approach is Holfoot [31], a
HOL mechanisation with support for automated reasoning about
the ‘shape’ of SL specifications – exactly those aspects captured by
abstract separation logic. However, unlike Separata, Holfoot does
not support magic wand. This is a common restriction when au-
tomating any notion of SL, because −∗ is a source of undecid-
ability [4]. Conversely, the mechanisations and embeddings that do
incorporate magic wand tend to give little thought to (semi-) de-
cision procedures. An important exception to this is the tableaux
of Galmiche and Méry [14], which are designed for the decidable
fragment of the assertion language of concrete separation logic with
−∗ identified by Calcagno et al [7], but may also be extendable to
the full assertion language. These methods have not been imple-
mented, and given the difficulty of the development we expect that
practical implementation would be non-trivial. Another partial ex-
ception to the trend to omit−∗ is SmallfootRG [9], which supports
automation yet includes septraction [32], the De Morgan dual of
−∗ . However SmallfootRG does not support additive negation nor
implication, and so −∗ cannot be recovered; indeed in this setting
septraction is mere ‘syntactic sugar’ that can be eliminated.

The denigration of magic wand is not without cost, as the con-
nective, while surely less useful than ∗, has found application. A
non-exhaustive list follows: generating weakest preconditions via
backwards reasoning [17]; specifying iterators [15, 19, 28]; reason-
ing about parallelism [12]; and various applications of septraction,
such as the specification of iterators and buffers [10]. For a par-
ticularly deeply developed example, see the correctness proof for
the Schorr-Waite Graph Marking Algorithm of Yang [33], which
involves non-trivial inferences involving −∗ (Lems. 78 and 79).
These examples provide ample motivation to build proof calculi
and tool support that include magic wand. Undecidability, which in
any case is pervasive in program proof, should not deter us from
seeking practically useful automation.

Our work builds upon the labelled sequent calculi for BBI of
Hóu et al [16]. Their prover FV LSBBI implements a free-variable
calculus for BBI but is incomplete. Our extensions to Hóu et al
involves two main advances: first, a counter-model construction
necessary to prove completeness; second, our prover deals with
labelled sequents directly and (given certain fairness assumptions)
is a complete semi-decision procedure for PASL and its variants.
The link between BBI and SL is also emphasised as motivation by
Park et al [27], whose BBI prover BBeye was used for comparisons
in Sec. 6. This work was recently refined by Lee and Park [23],
in work independent to our own, to a labelled sequent calculus
for Reynolds’ heap model. Their calculus, like ours, cannot prove
the formula (5)4 and so is not complete for these semantics. Also
related, but so far not implemented, are the tableaux for partial-
deterministic BBI of Larchey-Wendling and Galmiche [20, 21],
which, as mentioned in the introduction to this paper, are claimed
to be extendable with cancellativity to attain PASL via a “rather
involved” proof. In contrast, the relative ease with which certain
properties can be added or removed from labelled sequent calculi
is an important benefit of our approach; this advantage comes from
structural rules which directly capture the conditions on Kripke
relational frames, and handle the equality of worlds by explicit
global substitutions.

Finally we note that the counter-model construction of this pa-
per was necessary to prove completeness because many of the prop-
erties we are interested in are not BBI-axiomatisable, as proved by
Brotherston and Villard [6]; that paper goes on to give a sound and
complete Hilbert axiomatisation of these properties by extending
BBI with techniques from hybrid logic. Sequent calculus and proof
search in this setting is another promising future direction.

4 Confirmed by private communications with authors.



7→ L1G; Γ; ε : e1 7→ e2 ` ∆

(ε, h0 . h0);G[ε/h1][h0/h2]; Γ[ε/h1][h0/h2];h0 : e1 7→ e2 ` ∆[ε/h1][h0/h2]

(h0, ε . h0);G[ε/h2][h0/h1]; Γ[ε/h2][h0/h1];h0 : e1 7→ e2 ` ∆[ε/h2][h0/h1]
7→ L2

(h1, h2 . h0);G; Γ;h0 : e1 7→ e2 ` ∆

G[h/h′]; Γ[h/h′];h : e1 7→ e2;h : e1 7→ e3 ` ∆[h/h′]
7→ L3

G; Γ;h : e1 7→ e2;h′ : e1 7→ e3 ` ∆

G; Γ[e1/e3][e2/e4];h : e1 7→ e2 ` ∆[e1/e3][e2/e4]
7→ L4G; Γ;h : e1 7→ e2;h : e3 7→ e4 ` ∆

Figure 4. Some rules for the predicate 7→ in separation logic.

Formula Separata+
(1) ((e1 7→ e2) ∗ (e1 7→ e2))→ ⊥ 0.004
(2) (((e1 7→ e2) ∗ (e3 7→ e4)) ∧ ((e1 7→ e2) ∗ (e5 7→ e6)))→ ((e3 7→ e6) ∗ >) 0.002
(3) (∃x3x2x1.(((x3 7→ x2) ∗ (x1 7→ e)) ∧ (x2 = x1)))→ (∃x4x5.((x4 7→ x5) ∗ (x5 7→ e))) 0.001
(4) ¬((e1 7→ e2)−∗ ¬(e3 7→ e4))→ ((e1 = e3) ∧ ((e2 = e4) ∧ >∗)) 0.004
(5) ¬(((e1 7→ p) ∗ (e2 7→ q))−∗ ¬(e3 7→ r))→ ¬(((e1 7→ p)−∗ ¬(¬((e2 7→ q)−∗ ¬(e3 7→ r))))) 0.002
(6) ¬((e1 7→ p)−∗ ¬(e2 7→ q))→ ¬((e1 7→ p)−∗ ¬((e2 7→ q) ∧ ((e1 7→ p) ∗ >))) 0.003

Table 3. Experimental results from the prover Separata+.
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